Abstract

To improve the wear resistance of high chromium white cast iron under severe abrasive conditions, a composites layer was designed for wear surface, which were locally reinforced with WC particles. And the local composites were successfully fabricated by optimized centrifugal casting process. Then the interface between WC and iron matrix was analyzed with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). And three body wear tests were carried out on a self-made rig to investigate the wear resistance of the composites. For comparison, the wear tests of high chromium white cast iron were also carried out under the same conditions. The results show that: There are no defects such as inclusion, crack, gas pore and so on in the obtained composites layer, which with a uniform thickness of 10 mm. WC particles are homogeneously distributed in the composites layer and tightly bonded with the iron matrix. The WC particles are partially dissolved in the iron matrix during centrifugal casting. The elements W, C and Fe react to form new carbides such as Fe3W3C or M23C6, which precipitate around former WC particles during subsequent solidification. So the interface between WC particles and the iron matrix is a strong metallurgical bonding. WC particles in the composites layer can effectively resist cutting by the abrasive, and then protect the matrix. The wear resistance of the composites layer is 7.23 times of that of high chromium cast iron.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call