Abstract

Copper-aluminum (Cu-Al) based lamellar composites were prepared using a solid-liquid compound casting (SLCC) technology. Characterization results showed that the Cu-Al composites were fully-sintered at 700°C under an argon atmosphere using the SLCC technology. Cu-Al interfacial bonding was uniform with a well-defined transitional and inter-diffusion region. Intermetallic compounds and solid solutions of CuAl2, CuAl, Cu9Al4, CuAl3 and Cu3Al2 were detected at the interfacial region. With the increase of annealing temperature, the width of the Cu-Al interfacial region was increased, and the interfacial bonding strength was also increased, whereas the types of the intermediate phases were changed. With the increase of dwelling time at a given annealing temperature, the width of Cu-Al interfacial region was increased, the interfacial bonding strength was decreased and the mesophases were changed. The bonding strength of the as-prepared composite was 30MPa, whereas those of specimens annealed at 200°C for 2h, 300°C for 2h, 400°C for 2h, 300°C for 30min and 300°C for 1h were 59, 39, 74, 56, and 49MPa, respectively. The Cu-Al interfacial bonding mechanisms were identified to be rapid inter-diffusion of copper and aluminum and formation of interfacial and graded microstructures. The formation of copper-aluminum interface is a combined result of inter-atomic diffusion and interfacial chemical reactions, the latter of which is more dominant in the diffusion process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call