Abstract

The interfacial bond region between matrix and fibers is a non-negligible weak link that can significantly affect the mechanical properties of manufactured sand-based ultra-high-performance concrete (UHPMC). This study investigates the interfacial bond characteristics between steel fiber-UHPMC matrix using single-fiber pullout tests. Four variable parameters were considered: manufactured sand (MS) replacement ratio, stone powder content, fiber embedment length, and steel fiber geometry. Additionally, the microstructure of the steel fiber-UHPMC matrix interface was evaluated using backscattered electron microscopy (BSEM) and scanning electron microscopy (SEM). The results indicate that two typical failure modes including fiber pullout slip failure (in straight and hooked-end fibers) and fiber rupture failure (in corrugated fibers) were observed. The analysis of interfacial evaluation indicators shows that increasing the MS replacement ratio from 25 % to 100 % results in a decreasing trend in peak load, peak tensile stress, and energy consumption. Peak bond strength decreases with increasing embedment length. With the increase in stone powder content, the peak load, peak bond stress, and energy consumption increase initially and then decrease. Additionally, the interfacial failure mechanisms between straight/hooked-end steel fibers and the UHPMC matrix were further elucidated through bond-slip behavior characterization and microstructure analysis. Finally, a design-oriented bond-slip model was developed to predict the interfacial pull-out behavior of steel fiber -UHPMC matrix, showing favorable agreement between predicted and test results. These findings contribute to understanding the interfacial pullout behavior of steel fibers-UHPMC matrix, providing data reference for the performance optimization of UHPMC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.