Abstract
Inwardly rectifying, voltage-gated, two-pore domain, and related K+ channels are located in eukaryotic membranes rich in cholesterol. Here, molecular docking is used to detect specific binding sites (“hot spots”) for cholesterol on K+ channels with characteristics that match those of known cholesterol binding sites. The transmembrane surfaces of all available high-resolution structures for K+ channels were swept for potential binding sites. Cholesterol poses were found to be located largely in hollows between protein ridges. A comparison between cholesterol poses and resolved phospholipids suggests that not all cholesterol molecules binding to the transmembrane surface of a K+ channel will result in displacement of a phospholipid molecule from the surface. Competition between cholesterol binding and binding of anionic phospholipids essential for activity could explain some of the effects of cholesterol on channel function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.