Abstract
Diblock copolymer of PMMA 291 - b -PEO 114 and triblock copolymer of PMMA 120 - b - PEO 227 - b -PMMA 120 were synthesized and their interfacial properties at the air-water interface were investigated, where both blocks of polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) are surface active but the former is soluble in water while the latter is not. Both the block copolymers could form monolayers with two obvious transition regions. The first transition point is around 10 mN/m, which could be assigned to the pancake-brush change of the PEO chains. The other is around 18 mN/m, which could be ascribed to the condensed packing of PMMA. The surface morphological changes during the compression of the Langmuir monolayers are investigated by using the AFM and SEM methods for the films deposited at different surface pressure or molecular areas. At a lower surface pressure, a typical morphology of PEO-containing lipopolymers is observed. Upon compression, sphere-dominant morphologies were observed. While the diblock copolymer is easy to folding, the triblock copolymer is in favor of formation of circular domains through vesiculation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.