Abstract

Absorption modes and the reactivity of nonhalogenated ionic liquids (ILs) at inorganic oxide surfaces of γ-Al2O3, MgO, and SiO2 particles were characterized using multinuclear (11B, 31P, and 29Si) solid-state magic-angle-spinning NMR, FTIR, and Raman spectroscopy. ILs are composed of the trihexyl(tetradecyl)phosphonium cation, [P6,6,6,14]+, and bis(mandelato)borate, [BMB]−, or bis(salicylato)borate, [BScB]−, anions. Spectroscopic measurements were performed on room-temperature (298 K) samples and samples exposed to 15 h at 373 K. The single-pulse 11B NMR data of heated [P6,6,6,14][BMB] mixed with the inorganic oxides showed a significant change in the spectra of the anion for all three oxides. In contrast, no such spectral changes were detected for heated [P6,6,6,14][BScB] mixed with the inorganic oxides. 31P MAS NMR data for the IL/metal oxide systems revealed interactions between [P6,6,6,14]+ and the surfaces of oxides. A significant intensity of 31P CP-MAS NMR signals indicated a low mobility of cation...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.