Abstract

The adsorption and solution behaviors of symmetrical tetramethyl-, tetraethyl-, tetrapropyl-, and tetrabutylammonium bromides (TMAB, TEAB, TPAB, and TBAB, respectively) were studied at the air/water interface and in the bulk aqueous environments. Their salts were prepared by reacting tetraalkylammonium bromide (TAAB) with sodium dodecyl sulfate (SDS) in a solution from which the products of the higher two homologues (tetrapropylammonium dodecyl sulfate (TPADS) and tetrabutylammonium dodecyl sulfate (TBADS)) could only be isolated as solids and for which detailed characterization has been performed. The interfacial behaviors of 1:1 molar mixtures of TAAB and SDS and the prepared TPADS and TBADS were examined. Micellization of the 1:1 mixtures along with the isolated species were studied in the presence and absence of NaBr salt. The energetics of the micellization process and the counterion binding of the micelles were evaluated. The interaction of the TAABs with SDS micelles was examined, and the results were evaluated in terms of single- and two-site binding interaction models. Of the formed tetraalkylammonium dodecyl sulfates (TAADSs), only TBADS evidenced clouding, which was investigated in detail along with 1:1 molar mixtures of TBAB and SDS in aqueous solution in the presence of additives such as NaBr, SDS, and TBAB. The solution behaviors of the TAADS and the clouding of TBADS have been rationalized in terms of a mixed micellar model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call