Abstract

Mixed micelles formed by zwitterionic surfactant dimethyldodecylammniopropane sulfonate and short-chain phospholipid 1,2-diheptanoyl-sn-glycero-3-phosphocholine in different proportions in an aqueous medium have been studied physicochemically at an air/water interface and in the bulk by using interfacial tension and pyrene fluorescence intensity measurements, respectively. The critical micellar concentration and free energies of micellization and of interfacial adsorption have been determined. The interfacial study reveals that a mixed monolayer is formed at the air/water interface by the adsorption of surfactant and phospholipid monomers. This has been confirmed by evaluating the interfacial parameters; the maximum surface excess, the minimum area per molecule of a surface-active compound, and the Gibbs surface excess related to surface pressure. The nonideality of mixing, expressed in the terms of the regular solution interaction parameter, β, has negative values over the whole mole fraction range. The negative β values indicate the mutual synergism between the surfactant and phospholipid monomers. The equilibrium distribution of components between micelle and monomer phases was evaluated using a theoretical treatment based on excess thermodynamics quantities evaluated by Motomura's formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.