Abstract

The development of high performance electrocatalysts for effective hydrogen production is urgently needed. Herein, three hybrid catalysts formed by WS2 and Co-based metal-organic frameworks (MOFs) derivatives are constructed, in which the small amount of W in the MOFs derivatives acts as a bridge to provide the charge transfer channel and enhance the stability. In addition, the effects of the surface charge distribution on the catalytic performance are fully investigated. Due to the optimal interfacial electron coupling and rearrangement as well as its unique porous morphology, WS2 @W-CoPx exhibits superior bifunctional performance in alkaline media with low overpotentials in hydrogen evolution reaction (HER) (62mV at 10mA cm-2 ) and oxygen evolution reaction (OER) (278mV at 100mA cm-2 ). For overall water splitting (OWS), WS2 @W-CoPx only requires a cell voltage of 1.78V at 50mA cm-2 and maintains good stability within 72 h. Density functional theory calculations verify that the combination of W-CoPx with WS2 can effectively enhance the activity of OER and HER with weakened OH (or O) adsorption and enhanced H atom adsorption. This work provides a feasible idea for the design and practical application of WS2 or phosphide-based catalysts in OWS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.