Abstract

Mixed micelle formation and surface tension reduction effectiveness (γcmc) were investigated for the following systems: triethanolammonium dodecylpoly(oxyethylene)sulfate (TADPS, containing about two ethylene oxide units)/dodecyltrimethylammonium bromide, TADPS/hexadecyltrimethylammonium bromide and TADPS/hexadecylpyridinium chloride. For all these anionic/cationic systems, the mixed critical micelle concentration (cmc) values reflect a strong synergism in mixed micelle formation, with βM values ranging from −13.8 to −18.3. The mixed micelle composition is mixing-ratio dependent and, for equimolar mixtures, the mixed micelle is richer in the surfactant with the lower cmc. Precipitation is inhibited to a certain extent, thanks to the presence of ethylene oxide groups in the anionic species. The conditions for synergism in γcmc, differently expressed in the literature, can be derived from the surface tension equations established in our previous article. They can be conveniently described by a few characteristic constants: Γi∞ (saturated Gibbs excess), Ki (constant in the Szyszkowski equation), the cmc of the individual surfactants and the interaction parameters, βS and βM, of their mixtures. Excellent agreement between theoretically predicted and experimental results is obtained. With the increase in surfactant chain length, the βM values decrease faster than the βS ones and this can result in the loss of synergism in γcmc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call