Abstract
Copper and copper alloys are commonly used in industry due to their excellent mechanical properties, making research on the corrosion resistance of copper of great significance. The corrosion inhibition properties of 2-imidazolidinone and allantoin for copper in 3.5 wt % NaCl were studied by weight loss and electrochemical tests. Changes in the density of the copper corrosion current and the impedance module indicated that 2-imidazolidinone and allantoin exhibited cathodic corrosion inhibitors and a valid protective effect. Meanwhile, the weight loss tests showed that the inhibition efficiency of 2-imidazolidinone and allantoin at 3 mM reached 98.94% and 97.82%, respectively. The surface physiochemical properties were qualitatively and quantitatively studied by using SEM-EDS, XPS, white light interferometry, and contact angle analysis. The interfacial adsorption behavior revealed by QCM, synchrotron radiation micro-infrared, and adsorption isotherm analysis indicated that both imidazole derivatives formed an effective and rigid physical adsorption film and obeyed the Langmuir adsorption model on copper, while both the mass and thickness of the adsorption film formed by 2-imidazolidinone were higher than those of allantoin. This study contributed to an in-depth understanding of the interfacial adsorption behavior and corrosion inhibition ability of 2-imidazolidinone and allantoin and provided guidelines for the design and development of novel heterocycles as potential corrosion inhibitors for copper in marine environments. In particular, copper was used as a corrosion inhibitor in seawater storage and transport equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.