Abstract

Nanoporous zeolite thin films are promising candidates as future low-k materials. During the integration with other semiconducting materials, the high stresses resulted from the synthesis process can cause the film to fracture or delaminate from the substrates. Evaluating the interfacial adhesion of zeolite thin films is very important in achieving high performance low-k materials. In this work, laser spallation technique is utilized to investigate the interfacial strength of zeolite thin films from three different synthesis processes. The preliminary results show that the fully crystalline zeolite thin films from hydro-thermal in-situ and seeded growth methods have a stronger interface than that from the spin-on process. Effort is also being made to compare the interfacial strength of the zeolite films between the two hydro-thermal methods. This is the first time that the interfacial strength of zeolite thin films is quantitatively evaluated. The results have great significance in the future applications of low-k zeolite thin films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.