Abstract

AbstractThe interfacial adhesion between four different forms of jute fibers (sliver, bleached, mercerized and untreated) and polyolefinic matrices (LDPE and PP) was studied, as a critical factor affecting the mechanical behavior of these composites. The fiber‐matrix adhesion was estimated by means of the critical fiber length (lc) and the stress transfer ability parameter (τ); such parameters were obtained by Single Fiber Composite (SFC) tests. Tests were carried out to evaluate the mean tensile strength of the fibers, the mean critical fiber lengths and the stress transfer ability parameter for every fiber‐matrix combination, according to Weibull's statistical method. Thermal‐mechanical characterization of the fibers was also carried out to evaluate the resistance to processing conditions. A limited degradation of strength was observed, which, however, does not preclude the use of jute fibers as reinforcing means in polyolefin based composites. It was found that the adhesion was better in PP‐jute composites than in LDPE‐jute composites. In both cases the results showed that the sliver jute and the untreated jute had better adhesion to both matrices than had the bleached and the mercerized fibers. With both matrices the interface adhesion was in the order: mercerized < bleached < untreated = sliver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call