Abstract

Impedance and transient current measurements on metal–insulator–semiconductor (MIS) capacitors are used as tools to thoroughly investigate the bulk and interface electronic transport properties of semiconducting polymers, i.e. poly(3-hexylthiophene) (P3HT). Distinct features were observed at both interfaces, i.e. metal–semiconductor and semiconductor–insulator. The results revealed a dispersive transport in the bulk due to the band tail of the localized states, presence of interface states at the interface between the insulator and the semiconductor and formation of a less conductive small layer at the interface semiconductor–metal contact due to intrusions of sputtered Au particles. Effects of self-assembled monolayers (SAMs) treatments of the gate insulating dielectric were investigated showing that treating the gate dielectric with either ozone or hexamethyldisilazane (HMDS) or octyltrichlorosilane (OTS) alter not only the interface semiconductor–insulator but the bulk properties as well. An exponential density of states with a width parameter of 38–58meV depending on the surface treatment was found to be representative of the band tail of P3HT. Though both OTS and HMDS treatments slightly increase the density of interface states, only OTS treated samples showed a decrease in disorder parameter of the bulk. The latter fact can be attributed to an increase of the grain size due to a favored π-π stacking film growth. An outcome explaining the already reported increase of the lateral mobility and decrease of the vertical mobility observed upon OTS treatment of the gate insulating dielectric in poly(3-hexylthiophene) based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.