Abstract

Abstract The manipulation of magnetization in a metallic ferromagnet by using optical helicity has been much attracted attention for future opto-spintronic devices. The optical helicity–induced torques on the magnetization, optical spin torque, have been observed in ferromagnetic thin films recently. However, the interfacial effect of the optical spin torque in ferromagnet/nonmagnetic heavy metal heterostructures have not been addressed so far, which are widely utilized to efficiently control magnetization via electrical means. Here, we studied optical spin torque vectors in the ferromagnet/nonmagnetic heavy metal heterostructures and observed that in-plane field-like optical spin torque was significantly increased with decreasing ferromagnetic layer thicknesses. The interfacial field-like optical spin torque was explained by the optical Rashba–Edelstein effect caused by the structural inversion symmetry breaking. This work will aid in the efficient optical manipulation of thin film nanomagnets using optical helicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call