Abstract
Spin-crossover molecules present the unique property of having two spin states that can be controlled by light excitation at low temperature. Here, we report on the photoexcitation of [FeII((3, 5-(CH3)2Pz)3BH)2] (Pz = pyrazolyl) ultrathin films, with thicknesses ranging from 0.9 to 5.3 monolayers, adsorbed on Cu(111) substrate. Using X-ray absorption spectroscopy measurements, we confirm the anomalous light-induced spin-state switching observed for sub-monolayer coverage and demonstrate that it is confined to the first molecular layer in contact with the metallic substrate. For higher coverages, the well-known light-induced excited spin-state trapping effect is recovered. Combining continuous light excitation with thermal cycling, we demonstrate that at low temperature light-induced thermal hysteresis is measured for the thicker films, while for sub-monolayer coverage, the light enables extension of the thermal conversion over a large temperature range. Mechanoelastic simulations underline that, due to the intermolecular interactions, opposite behaviors are observed in the different layers composing the films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.