Abstract

As a follow up to our finding that CuCl/Si superlattices exhibit metallicity at the interfaces and possibly superconductivity, we explore other semiconductor superlattices for the same properties and present here our results for ZnS/Si and GaP/Si superlattices. As found for the CuCl/Si superlattices, both the ZnS/Si and GaP/Si superlattices exhibit two-dimensional metallicity at their interfaces, as shown by their band structures, Fermi surfaces, and charge-density distributions. Furthermore, to gauge any possible superconductivity, the McMillan-Hopfield electron-phonon coupling constant, , is calculated using the rigid muffin-tin approximation. Electron-phonon coupling is observed mostly at the interfaces but it is not strong enough to cause superconductivity at a finite temperature as estimated using the McMillan formula for Tc. This contrasts greatly with the CuCl/Si superlattices, in which electron-phonon coupling is strong enough to indicate superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.