Abstract

Interface traps generally are not considered to be likely sources of low-frequency (LF) noise and/or random telegraph noise (RTN) in metal–oxide–semiconductor (MOS) devices because the longer carrier exchange times of border traps are more consistent with experimental observations. In contrast, correlated mobility fluctuations due to remote Coulomb scattering from charged border traps cannot explain the unexpectedly large LF noise and/or RTN observed in some MOS devices. In this Letter it is proposed that equilibrium fluctuations in interface-trap concentrations caused by hydrogen-induced activation and passivation reactions can lead to enhanced LF noise and RTN. This mechanism adds to other noise sources, including border traps, random dopants, and bulk-Si defect clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call