Abstract

The diffusive regime of double-diffusive convection generates staircases consisting of thin high-gradient interfaces sandwiched between convectively mixed layers. Simultaneous microstructure measurements of both temperature and conductivity from the staircases in Lake Kivu are used to test flux laws and theoretical models for double diffusion. Density ratios in Lake Kivu are between one and ten and mixed layer thicknesses on average 0.7 m. The larger interface thickness of temperature (average 9 cm) compared to dissolved substances (6 cm) confirms the boundary-layer structure of the interface. Our observations suggest that the boundary-layer break-off cannot be characterized by a single critical boundary-layer Rayleigh number, but occurs within a range of O(10(2)) to O(10(4)). Heat flux parameterizations which assume that the Nusselt number follows a power law increase with the Rayleigh number Ra are tested for their exponent . In contrast to the standard estimate =1/3, we found =0.200.03 for density ratios between two and six. Therefore, we suggest a correction of heat flux estimates which are based on =1/3. The magnitude of the correction depends on Ra in the system of interest. For Lake Kivu (average heat flux 0.10 W m(-2)) with Ra=O(10(8)), corrections are marginal. In the Arctic Ocean with Ra=O(10(8)) to O(10(12)), however, heat fluxes can be overestimated by a factor of four.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.