Abstract

The interface structure and electronic properties of monolayer (1L) MoS2 domains grown by chemical vapor deposition on 4H–SiC(0001) are investigated by microscopic/spectroscopic analyses combined with ab initio calculations. The triangular domains are epitaxially oriented on the (0001) basal plane, with the presence of a van der Waals (vdW) gap between 1L–MoS2 and the SiC terraces. The high crystalline quality of the domains is confirmed by photoluminescence emission. Furthermore, a very low tensile strain (ε ≈ 0.03%) of 1L–MoS2, consistent with the small in‐plane lattice mismatch, and a p‐type doping of (0.45 ± 0.11) × 1013 cm−2, is evaluated by Raman mapping. Density functional theory (DFT) calculations of the MoS2/4H–SiC(0001) system are also performed, considering different levels of refinement of the model: 1) the simple case of the junction between Si‐terminated SiC and MoS2, showing a covalent bond between the Si–S atoms and n‐type doping of MoS2; 2) the complete passivation of Si dangling bonds with a monolayer (1 ML) of oxygen atoms, resulting in a vdW bond with dSi–S ≈ 3.84 Å bond length and p‐type doping of MoS2; and 3) partial (¼ ML and ½ ML) oxygen coverages of the 4H–SiC surface, resulting in intermediate values of dSi–S and doping behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call