Abstract

The effect of intermixing on the apparent interface stress is studied in 〈111〉-textured dc-magnetron sputtered Au/Ni multilayers by use of two methods commonly used for determining interface stress. The method using profilometry and in-plane x-ray diffraction does not take intermixing into account and yields an apparent interface stress of −8.46±0.99 J m−2. However, observed discrepancies between model calculations and measured high-angle x-ray diffractograms indicate intermixing, and by use of the profilometry and sin2 ψ method the real interface stress value of −2.69±0.43 J m−2 is found. This method also reveals a significant and systematic change of the stress-free lattice parameter of both constituents as a function of modulation period which is shown to account for the difference between the two findings. The method using in-plane diffraction is thus shown to be inapplicable to interface stress determinations in systems exhibiting a modulation period-dependent stress-free lattice parameter. Finally, a deviation of the interface stress in the Au/Ni sample with the smallest modulation period as compared to specimens with larger bilayer lengths is observed to be concurrent with a significant decrease in the interface roughness measured by x-ray reflectivity, which suggests that the deviation is of geometrical origin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.