Abstract

Recombination in bulk heterojunction organic solar cells based on polycarbazole/fullerene blends are studied through measurements of the solar-cell response. Different recombination mechanisms are analyzed, including recombination of the charge-transfer exciton, Auger recombination, and recombination at interfacial localized states. The measured recombination kinetics, the temperature dependence of the current-voltage characteristics, the dark forward bias diode current, and modeling studies, all indicate that the dominant recombination is through interface states between the polymer and fullerene domains, with an estimated density of order ${10}^{11}\text{ }{\text{cm}}^{\ensuremath{-}2}$. Modeling studies indicate that a tenfold reduction in the interface state density could potentially double the solar-cell efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.