Abstract

The interface roughness of adjacent films which were made by plasma polymerization of hexamethyldisiloxane were investigated. Multilayered structures were made by using different plasma conditions in alteration resulting in different mechanical properties within each layer. Scanning force microscopy on the face side of fractured pieces of the multilayer structures revealed a significant phase contrast between the layers. The direct visualization of the interface using the mechanical contrast between layers allowed the estimation of the interfacial roughness. We found that the interfaces between hexamethyldisiloxane films deposited at a radio frequency (RF) input power of 90 W in the presence of oxygen on top of films made by 48 W without oxygen resulted in an interface roughness of ≈10 nm. In the reverse case, a significantly lower interface roughness of ≈3 nm was determined. We attribute the increase of the interfacial roughness compared to the surface roughness being <1 nm to partial etching of the films by the subsequent deposition process. A key role in the appearance of higher interface roughness plays the RF-input power that determines the cross linking density and the hydrocarbon content in layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.