Abstract

The impact of the bulky-cation-modified interfaces on halide perovskite solar cell stability is underexplored. In this work, the thermal instability of the bulky-cation interface layers used in the state-of-the-art solar cells is demonstrated. X-ray photoelectron spectroscopy and synchrotron-based grazing-incidence X-ray scattering measurements reveal significant changes in the chemical composition and structure at the surface of these films that occur under thermal stress. The changes impact charge-carrier dynamics and device operation, as shown in transient photoluminescence, excitation correlation spectroscopy, and solar cells. The type of cation used for surface treatment affects the extent of these changes, where long carbon chains provide more stable interfaces. These results highlight that prolonged annealing of the treated interfaces is critical to enable reliable reporting of performances and to drive the selection of different bulky cations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.