Abstract

The catalytic efficiency of manganese-based catalysts in practical ozone decomposition applications is limited by challenging desorption of intermediate oxygen species and competitive adsorption of H2O molecules in humid environments. In this work, MnCO3/Mn3O4 composites with heterogeneous structures were synthesized through a facile one-step strategy. The obtained MnCO3/Mn3O4-1/2 catalyst exhibited high content of oxygen vacancies, fast electron mobility rate and obvious advantages in catalytic ozone decomposition performance at a space velocity of 600 L gāˆ’1 hāˆ’1 and 95% RH. In-situ DRIFT spectra indicated that the rate-determining steps for ozone decomposition of MnCO3 and Mn3O4 are the reaction of atomic oxygen with ozone to form O22- and desorption of O22-, respectively. MnCO3/Mn3O4 heterogeneous catalyst undergoes reconfiguration under ozone atmosphere, inducing discontinuous MnOx coatings on the MnCO3 surface, which form a potential difference with Mn3O4. MnCO3/Mn3O4 heterogeneous structure modulates the electronic state of active site, and the synergistic effect of MnCO3 and Mn3O4 improves catalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.