Abstract

Interfaces remain one of the major issues in limiting the understanding and designing of polymer nanocomposites due to their complexity and pivotal role in determining the ultimate composites properties. In this study, we take multi-walled carbon nanotubes/silicone elastomer nanocomposites as a representative example, and have for the first time studied the correlation between high-frequency dielectric dispersion and static/dynamic interfacial characteristics. We have found that the interface together with other meso-structural parameters (volume fraction, dispersion, agglomeration) play decisive roles in formulating the dielectric patterns. The calculation of the relaxation times affords the relative importance of interfacial polarization to dipolar polarization in resultant dielectric relaxation. Dielectric measurements coupled with cyclic loading further reveals the remarkable capability of dielectric frequency dispersion in capturing the evolution of interfacial properties, such as a particular interface reconstruction process occurred to the surfactant-modified samples. All these results demonstrate that high-frequency dielectric spectroscopy is instrumental to probing both static and dynamic meso-structural characteristics, especially effective for the composites with relative weak interfaces which remains a mission impossible for many other techniques. The insights provided here based on the analyses of dielectric frequency dispersion will pave the way for optimized design and precise engineering of meso-structure in polymer nanocomposites.

Highlights

  • Investigation of dielectric frequency dispersion in the frequency range of 8.2–12.4 GHz has been highlighted for multi-walled carbon nanotubes (MWCNTs)/silicone elastomer nanocomposites with different interfacial properties

  • By analyzing dielectric relaxation mechanism from various perspectives, we have found that engineering interface is only effective when the challenge of dispersion is resolved for nanocomposites, which is enlightening for tuning properties elaborately and improving the performance of functional polymer nanocomposites

  • Since microwave absorption of carbon nanotubes (CNTs) composites is dependent on the dispersion and interfacial properties[43], the dielectric response frequency range can be effectively tuned by adjusting the dispersion and interfacial interaction in nanocomposites with decorating molecules to modulate the operating frequency of microwave absorber

Read more

Summary

Introduction

Key issues still exist in the research for interfaces in nanocomposites: (i) it remains a challenge to characterize relatively weak interfaces; (ii) previous research mainly emphasized on the interface itself and little attention was given to investigate the interplay between interfaces and other structural characteristics; (iii) the intrinsic effects of specific interface conditions in determining the macroscopic functionality of materials remain obscure, making it difficult to apply the principles obtained from individual study to the design and fabrication of general nanocomposites. Thereby, for the first time a relatively high frequency range in the order of gigahertz is employed in our study to interpret the meso-structural characteristics

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.