Abstract

First-principles calculations are performed to investigate interface properties, Li defects formation and migration mechanism across the interface between negative metal electrode and solid electrolyte (Li/γ-Li3PO4). We have analyzed the band alignment between Li and Li3PO4, interfacial charge distribution and electronic properties to elucidate the properties of the model interface. Our results show that the high Li-ion (Li+) defect formation energy is determined by the Li metal Fermi level leading to low ionic conductivity of Li metal/electrolyte interface. The electronic structure study of this Li metal/Li3PO4 interface provides information on the Li defect formation and migration, which will help us to improve the ionic conductivity for future Li-ion battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.