Abstract

The concept of source descriptor and coupling function is commonly recognized to form a rigorous basis for structure-borne sound source characterization. While this concept initially is valid for the single-point case only, it can be extended to sources with multi-point coupling by including the interface mobility approach. By considering a continuous interface that passes all contact points, the velocities, forces and mobilities are series expanded into interface orders by means of a spatial Fourier decomposition. The use of a continuous formulation for the multi-point case, however, can be problematic from a practical point of view. This paper discusses a reformulation of the interface mobility approach for a simplified calculation and clarified interpretation of the interface orders. With a discrete Fourier series as a basis for the interface mobility approach, the interface is reduced to a set of points and the interface orders are shown to describe the interplay of the data at the contact points. A discrete formulation furthermore yields simplified equations and a strict upper bound for the number of orders that have to be included, thus enhancing the practicability of interface mobilities for source characterization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call