Abstract
The theory of interface localization in near-critical planar systems at phase coexistence is formulated from first principles. We show that mutual delocalization of two interfaces, amounting to interfacial wetting, occurs when the bulk correlation length critical exponent $\nu$ is larger than or equal to 1. Interaction with a boundary or defect line involves an additional scale and a dependence of the localization strength on the distance from criticality. The implications are particularly rich in the boundary case, where delocalization proceeds through different renormalization patterns sharing the feature that the boundary field becomes irrelevant in the delocalized regime. The boundary delocalization (wetting) transition is shown to be continuous, with surface specific heat and layer thickness exponents which can take values that we determine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.