Abstract

ABSTRACTExperiment shows that the reverse short channel effect (RSCE) in nMOS devices is critically impacted by the inclusion of nitrogen in the gate oxide. A higher concentration of nitrogen results in a lessened RSCE, i.e. more threshold voltage rolloff for smaller gate lengths. We propose that the additional nitrogen reduces the interstitial recombination rate at the interface, resulting in a smaller interstitial flux and therefore less transient enhanced diffusion (TED) of boron to that interface. To test this hypothesis, we simulate boron redistribution in one and two dimensional MOS capacitor structures, as well as full nMOS devices. We then present simulations calibrated to a 0.2 pim technology currently in production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.