Abstract
Despite the technological importance of metal/Si multilayer structures in microelectronics, the interface reactions occurring during their preparation are not yet fully understood. In this work, the interface intermixing in Mo/Si multilayer coatings has been studied with respect to their preparation conditions. Various samples, prepared at room temperature with different Mo deposition rates (0.06–0.43 Å s−1) and a constant Si rate, have been investigated by detailed TEM observations. Contrary to the Si-on-Mo interface where no evidence of chemical intermixing could be found, the Mo-on-Si interface presents a noticeable interface zone whose thickness was found to noticeably decrease (from 4.1 to 3.2 nm) when increasing the Mo deposition rate. Such intermixing phenomena correspond to diffusion mechanisms having coefficients ranging from 0.25 × 10−15 to 1.2 × 10−15 cm2 s−1 at room temperature. By assuming a diffusion mechanism mainly driven by Mo–Si atomic exchanges to minimize the surface energy, the diffusion dependence with Mo deposition rate has been successfully simulated using a cellular automaton. A refined simulation including Mo cluster formation is also proposed to explain the scenario leading to the full crystallization of Mo layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.