Abstract

P(St-MAA) photonic crystals of face-centered cubic structure in bright structural colors were fabricated on polyester fabrics by interface–gravity joint self-assembly. The elaborate self-assembly process was investigated by digital camera, 3D video microscope, and field emission scanning electron microscopy, and the possible interface–gravity joint self-assembly and crystallization mechanisms of the colloidal microspheres on polyester fabric substrates were proposed. It was confirmed that the interface–gravity joint self-assembly on polyester fabrics was composed of two different self-assembly processes simultaneously, in which the rate of interfacial self-assembly driven by capillary force and convection effect is much faster than the gravitational sedimentation self-assembly under the gravity. With the evaporation of solvent, an ordered colloidal crystal structure was gradually formed in the interfacial self-assembly on the air–liquid interface with a disorder-to-order transition during crystallization stage and covered on the polyester fabric substrate filled with colloidal microspheres in gaps between yarns and fibers during gravitational sedimentation self-assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.