Abstract

AbstractThe microstructures of photo‐ and counter‐electrodes play critical roles in the performance of dye‐sensitized solar cells (DSSCs). In particular, various interfaces, such as fluorinated‐tin oxide (FTO)/TiO2, TiO2/TiO2, and TiO2/electrolyte, in DSSCs significantly affect the final power conversion efficiency (PCE). However, research has generally focused more on the design of various nanostructured semiconducting materials with emphasis on optimizing chemical or/and physical properties, and less on these interface functionalizations for performance improvement. This work explores a new application of graphene to modify the interface of FTO/TiO2 to suppress charge recombination. In combination with interfaces functionalization of TiO2/TiO2 for low charge‐transport resistance and high charge‐transfer rate, the final PCE of DSSC is remarkably improved from 5.80% to 8.13%, achieving the highest efficiency in comparison to reported graphene/TiO2‐based DSSCs. The method of using graphene to functionalize the surface of FTO substrate provides a better alternative method to the conventional pre‐treatment through hydrolyzing TiCl4 and an approach to reduce the adverse effect of microstructural defect of conducting glass substrate for electronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.