Abstract

Interface fracture mechanics is one of the main focuses of electronics reliability research. Determination of fracture mechanical properties of interface cracks is a substantial task for design for reliability concept. Without experimental determined fracture mechanical parameters such as the critical energy release rate a reliability forecast based on simulation results cannot be given. In fracture mechanics testing often a correct measurement of the crack tip location is needed for the calculation of the energy release rate. The authors present a combined simulative and experimental method for crack tip location determination of typical interface specimens. The specimens are loaded in a newly designed testing apparatus, the Mixed Mode Chisel (MMC) setup, and images of the crack tip at the interface are taken at different load states during the testing procedure. Then images are analyzed by image correlation techniques (DAC, deformation analysis by correlation) and crack tip displacement fields are determined. In the next analysis step the displacement fields are compared to fields from finite element analysis of the same specimen geometry with boundary conditions similar to the experimental setup. The point of the best matching of the experimental and simulative field is the actual crack tip location. If finite-element data or analytical solution for the crack tip displacement field is available the method can be applied for a variety of different interface samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.