Abstract

The establishment of intimate electrode/electrolyte interface is very important in solid oxide fuel cells (SOFCs), because it plays a critical role in the overall cell performance and durability. In this study, Mn segregation and interface formation between directly assembled La0.8Sr0.2MnO3 (LSM) electrode and yttrium-stabilized zirconia (YSZ) or gadolinium-doped ceria (GDC) electrolytes are studied using combined focused ion beam and scanning transmission electron microscopy (FIB-STEM). In the case of LSM/YSZ and LSM/GDC electrodes, a significant reduction in the electrode ohmic resistance is observed after cathodic polarization at 900 °C and 500 mA cm−2, indicating the formation of an intimate interface. However, LSM particles start to disintegrate at the electrode/electrolyte interface with the increase of polarization time in the case of LSM/YSZ electrode. On the other hand, the LSM/GDC interface is very stable with negligible microstructure change at the interface. Mn segregation from the LSM perovskite structure is identified under the influence of polarization in both LSM/YSZ and LSM/GDC electrodes. The results demonstrate that nature of the electrolyte plays a critical role in the electrochemical activity, microstructure, morphology and stability of LSM/electrolyte interface under SOFC operation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.