Abstract

Perovskite light-emitting diodes (PeLEDs) have attracted wide attention due to their excellent photoelectric properties. A variety of additives have been studied for perovskite emission layers to enhance the performance of PeLEDs. However, the buried interface, which also has significant influence on the crystallization kinetics and exciton recombination dynamics of the perovskite emission layer, remains to be explored. In this work, we introduced a new ionic liquid 1-Ethyl-3-methylimidazolium dicyanamide (EMIM DCA) with the characteristics of low viscosity and high conductivity into the interfacial layer between the hole transport layer (HTL) and the perovskite film. Due to the strong interaction between the EMIM DCA and perovskite, the crystallization of the perovskite film is obviously improved and the defects at the interface are well passivated. As a result, the nonradiative recombination in the interlayer is significantly reduced. In addition, the introduction of EMIM DCA promoted the injection of charge carriers, thus achieving a high luminance of 32310 cd m−2 and enabling the maximum external quantum efficiency (EQE) of the PeLEDs increased from 10.2 % to 18.7 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.