Abstract

In silica-filled rubber composites, the silanization modification of silica plays a vital role in enhancing the compatibility between silica and a rubber matrix and hence the properties of the composites. In the present study, with the goal of promoting silanization reactivity and extent, we utilize a phosphonium ionic liquid (PIL) as a novel catalyst for the silanization reaction between silica and bis(3-triethoxysilylpropyl)-tetrasulfide (TESPT), a commonly used silane in the tire industry, in the styrene–butadiene rubber (SBR) matrix. Dynamic rheological measurement, bound rubber measurement, freezing point depression, and heat capacity increment together show that the addition of a small amount of PIL into a TESPT-modified SBR/silica composite gives rise to significant improvement in the interfacial adhesion between silica and the rubber matrix, which is on account of the promoted silanization extent of silica with the catalyst of PIL. Consequently, the resulting composite prepared at room temperature...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call