Abstract

All-solid-state lithium batteries (ASSLIBs) employing sulfide solid electrolyte hold high promise to replace traditional liquid-electrolyte LIBs due to their high safety and energy density. However, Li dendritic growth in sulfide electrolyte limits the realization of the high energy of ASSLIBs. In this work, we use LiF (or LiI) layer at the interface between Li and sulfide electrolyte and penetrated HFE (or I solution) inside of sulfide electrolyte to suppress the Li dendrite growth. Due to the higher interface energy of LiF/Li than that of LiI/Li, LiF interlayer show much higher capability than LiI in suppressing the Li dendrite. Even if the Li dendrite breaks through LiF (or LiI) interlayer, the Li dendrites will be consumed by coated/penetrated HEF (or I) forming LiF (or LiI) thus preventing Li dendrite growth. A LiNbO3 @LiCoO2/Li7P3S11/Li ASSLIB employing HFE coated/infiltrated Li7P3S11 glass-ceramic as electrolyte, and LiF coated Li metal as anode shows a high reversible discharge capacity of 118.9 mAh g−1 at 0.1 mA cm−2 and retains 96.8 mAh g−1 after 100 cycles. The designed solid electrolyte interphase between Li and solid electrolyte that has a high interface energy to Li provides new opportunity to commercialize the Li metal batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.