Abstract

Heterostructure materials are increasingly utilized in solar energy conversion to pursue high efficiency and long-term stability. The charge transfer across interfaces gives rise to major energy loss arising from non-ideal interfacial effects, i.e., high interfacial energy barrier and low interfacial contacting area. Herein, we demonstrate a facile interface engineering strategy to eliminate non-ideal interfacial effects. A heterojunction of CN@C-P25 is constructed via polyphenol-assisted assembly of titania (P25) and carbon nitride (CN). The uniform dispersion of P25 on CN enlarges the interfacial contacting area of 3.2-fold compared with random dispersion, while the transformation of polyphenols into conjugated carbon facilitates the interfacial charge transfer by switching a 0.4 eV Schottky contact to a 0.1 eV Ohmic contact between CN and P25. A 2.5-fold enhancement of charge transfer flux is obtained with an initial reaction rate of 5185 μmol h−1 g−1 for photocatalytic nicotinamide regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.