Abstract
Interface engineering is considered as an effective strategy to improve the hydrogen evolution reaction (HER) performance of electrocatalysts. Herein, the Ni0.85Se/Ni3S2 heterostructure grown on nickel foam (NF) is synthesized via successive wet-chemical processes. The obtained Ni0.85Se/Ni3S2 heterostructure is firstly investigated as an HER electrocatalyst in alkaline media and exhibits more excellent electrochemical properties over Ni3S2. And it delivers a low overpotential of 145 mV at a current density of −10 mA cm−2, and superior stability. Based on the analysis of high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectra (XPS), the enhanced HER activity is due to the modulation of surface electronic structure, ascribing from the construction of heterointerface between Ni0.85Se and Ni3S2. Meanwhile, the Ni0.85Se/Ni3S2 heterostructure prepared in this work is also verified to be employed as a promising alternative to noble metal catalysts in HER.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.