Abstract

The development of multifunctional and durable electrocatalysts for hydrogen energy production via an energy-saving avenue is urgently desired. Urea electrolysis by substituting the oxygen evolution reaction (OER) with a more oxidizable urea oxidation reaction (UOR) has been widely used to realize energy-saving hydrogen production. Herein, metal-organic framework (MOF)-derived interface-engineered NiMoO4@NiFeP core-shell nanorods as electrocatalysts are constructed. Due to the integration of the advantages of the interface synergistic effect between the NiMoO4 core and NiFeP shell, the as-fabricated NiMoO4@NiFeP electrocatalyst demonstrates remarkable electrocatalytic performance toward the hydrogen evolution reaction (HER), OER, and UOR. In the urea electrolysis system, an ultralow cell voltage of 1.30 V is needed to drive the current density of 10 mA cm-2, which is 140 mV lower than that of the conventional overall water splitting system. The cost-efficient and high-performance NiMoO4@NiFeP electrocatalyst paves the way to explore practical applications of energy-saving hydrogen production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.