Abstract

Constructed heterojunction has been considered an efficient strategy to enhance the migration and transfer of photoinduced charge carriers. Herein, a Z-scheme Cu2O/BiOBr heterojunction with 0D/2D structure was fabricated by microwave hydrothermal method. It was found that the optimal composites photocatalyst showed excellent activity for sulfamethoxazole (SMZ) illumination, and the removal rate reached 90.7%, which was higher than pristine Cu2O (53.0%) and BiOBr (60.0%). Subsequently, the operational parameters such as catalyst dosage, concentrations of pollutants, and pH of solution were investigated. According to the ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRs), Mott-Schottky curve, and density functional theory (DFT) analysis, the Z-scheme degradation mechanism of Cu2O/BiOBr heterostructure was proposed. Among them, the interface structure of 0-dimensions/2-dimensions (0D/2D) can significantly increase the number of heterojunctions in the composite catalyst, and Z-scheme heterostructures can accelerate the generation and migration of photoinduced charge carriers, which has a facilitation effect on improving the decomposition activity of the photocatalyst. Moreover, three possible pathways for SMZ degradation were inferred. This study provides a promising strategy for constructing novel heterojunctions with high photocatalytic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call