Abstract
Abstract The sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics greatly limit the development of lithium-oxygen (Li-O2) batteries. Therefore, developing efficient electrocatalysts with high stability to boost oxygen involved reactions is particularly important for promoting the application of Li-O2 batteries. Here, CoSe2@NiSe2 heterostructure with distinct heterogeneous interfaces was fabricated via deliberate interface engineering. The formation of heterogeneous interface promotes local fine atomic array distortion that can act as an additional active site of ORR/OER. In addition, CoSe2@NiSe2 with a distinct heterogeneous interface is favorable for the formation of built-in electric field during charging/discharging to enable electrodes with fast electrical transfer rates and reaction kinetics. Synergistically, the additional active sites brought by the fine atomic array distortion are highly conducive to the reversible formation and decomposition of the product. Undoubtedly, batteries with CoSe2@NiSe2 exhibit excellent discharge/charge capacity (3530.1 mA h g−1 and 3485.6 mA h g−1), low overpotential (1.21 V) and excellent electrochemical stability for over 1200 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.