Abstract

Modifying the electronic structure of a catalyst through interface engineering is an effective strategy to enhance its activity in the hydrogen evolution reaction (HER). Interface engineering is a viable strategy to enhance the catalytic activity of transition metal phosphides (TMPs) in the HER process. The interface-engineered FeP/NiP2/Ni5P4/NiP multi-metallic phosphide nanoparticles confined in a N, P-doped carbon matrix was developed by a simple one-step low-temperature phosphorization treatment, which only requires 72 and 155 mV to receive the current density of 10 mA/cm2 in acid and alkaline electrolyte, respectively. This enhanced performance can be primarily attributed to the heterointerface of FeP/NiP2/Ni5P4/NiP multi-metallic phosphides, which promotes electron redistribution and optimizes the adsorption/desorption strength of H* on the active sites. Furthermore, the N, P-doped carbon framework that encapsulates the nanoparticles inhibits their aggregation, leading to an increased availability of active sites throughout the reaction. The results of this study open up a straightforward and innovative approach to developing high-performance catalysts for hydrogen production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.