Abstract

Nanostructured solar cells have the potential to provide a low-cost alternative to more traditional thin film solar cell technologies. Of particular interest are nanostructured solar cells with inorganic semiconductor absorbers, due to their favorable absorption properties. Such devices include quantum-dot-sensitized solar cells (QDSSCs), extremely thin absorber solar cells (ETASCs), and colloidal quantum dot solar cells (CQDSCs). However, these device architectures suffer from high rates of internal recombination and other problems associated with their extensive internal surface areas. Interfacial surface treatments have proven to be a highly effective means to improve the electronic properties of these devices, leading to overall gains in efficiencies. In this Perspective, we focus on three types of interfacial modification: band alignment by molecular dipole layers, improved CQD film mobilities by ligand exchange, and reduced recombination by interfacial inorganic layers. Select examples in each of these categories are highlighted to provide a detailed look at the underlying mechanisms. We believe that surface modification studies in these devices-QDSSCs, ETASCs, and CQDSCs-are of interest not only to these fields, but also to the broader photovoltaics community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call