Abstract

We studied the effect of the charge transport layers in p-i-n perovskite solar cells using vacuum deposited methylammonium lead iodide thin-film absorbers. While solution-processed perovskite films are frequently deposited directly on PEDOT:PSS leading to good solar cell performances, in some cases even to very good Voc values, we show that in devices employing vacuum deposited MAPbI3 perovskites, the removal of the polyTPD electron blocker substantially reduces the photovoltaic behavior. This is indicative of rather different charge transport properties in the vacuum deposited MAPbI3 perovskites compared to those prepared from solution. On the other hand, we investigated the use of ionic interlayers as a possible alternative to low work function electrodes, whose reactivity towards air and moisture compromises the device stability. Two different electron extraction materials were evaluated as interlayers between the fullerene electron transport layer and a silver electrode, in particular a perylenediimide derivative and a conjugated polyelectrolyte. By studying the photovoltaic response and the electroluminescence properties of planar diodes using the ionic films and comparing them with devices employing barium, we found that such ionic interlayers can successfully replace the use of reactive electrodes, since they facilitate the electron extraction while reducing the non-radiative recombination at the electron transport interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.