Abstract

In this work, a SnO2 /ZnO bilayered electron transporting layer (ETL) aimed to achieve low energy loss and large open-circuit voltage (Voc ) for high-efficiency all-inorganic CsPbI2 Br perovskite solar cells (PVSCs) is introduced. The high-quality CsPbI2 Br film with regular crystal grains and full coverage can be realized on the SnO2 /ZnO surface. The higher-lying conduction band minimum of ZnO facilitates desirable cascade energy level alignment between the perovskite and SnO2 /ZnO bilayered ETL with superior electron extraction capability, resulting in a suppressed interfacial trap-assisted recombination with lower charge recombination rate and greater charge extraction efficiency. The as-optimized all-inorganic PVSC delivers a high Voc of 1.23 V and power conversion efficiency (PCE) of 14.6%, which is one of the best efficiencies reported for the Cs-based all-inorganic PVSCs to date. More importantly, decent thermal stability with only 20% PCE loss is demonstrated for the SnO2 /ZnO-based CsPbI2 Br PVSCs after being heated at 85 °C for 300 h. These findings provide important interface design insights that will be crucial to further improve the efficiency of all-inorganic PVSCs in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.