Abstract
The high open-circuit voltage (VOC) in silicon heterojunction solar cells is attributed to the superior amorphous–crystalline silicon interface passivation. In this work, we investigated a method called intermediate hydrogen plasma treatment (I-HPT) in which the intrinsic amorphous silicon is exposed to hydrogen plasma in between the deposition using direct current (d.c.) plasma-enhanced chemical vapor deposition. This method can not only enhance the surface passivation but also find industrial application due to its ease of integration in the production line. Fourier transform infrared spectroscopy reveals that I-HPT makes the bulk of the amorphous matrix more disordered. We anticipate that the improvement in passivation comes from the diffusion of hydrogen from the bulk to the interface and shifting of the film closer to the “amorphous-to-microcrystalline” transition regime. Our optimized I-HPT method can obtain an implied VOC of 746 mV without annealing, which corresponds to a low surface recombination velocity of 3.2 cm/s. Therefore, we propose the I-HPT method as an alternative to high-temperature annealing which can reduce a fabrication step and processing time. The I-HPT films characterized by Raman spectroscopy do not show any hydrogen-induced crystallization. We have also demonstrated the proof of concept by applying I-HPT to a silicon heterojunction solar cell which shows ∼15 mV increase in VOC in the device and an absolute increase in efficiency by 0.3% as compared to a cell with no HPT.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.