Abstract

Three-dimensional graphene (3D-Gr) with excellent light absorption properties has received enormous interest, but in conventional processes to prepare 3D-Gr, amorphous carbon layers are inevitably introduced as buffer layers that may degrade the performance of graphene-based devices. Herein, 3D-Gr is prepared on germanium (Ge) using two-dimensional graphene (2D-Gr) as the buffer layer. 2D-Gr as the buffer layer facilitates the in situ synthesis of 3D-Gr on Ge by plasma-enhanced chemical vapor deposition (PECVD) by promoting 2D-Gr nucleation and reducing the barrier height. The growth mechanism is investigated and described. The enhanced light absorption as confirmed by theoretical calculation and 3D-Gr/2D-Gr/Ge with a Schottky junction improves the performance of optoelectronic devices without requiring pre- and post-transfer processes. The photodetector constructed with 3D-Gr/2D-Gr/Ge shows an excellent responsivity of 1.7 A W-1 and detectivity 3.42 × 1014 cm Hz1/2 W-1 at a wavelength of 1550 nm. This novel hybrid structure that incorporates 3D- and 2D-Gr into Ge-based integrated circuits and photodetectors delivers excellent performance and has large commercial potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.