Abstract

High grain-boundary resistance, Li-dendrite formation, and electrode/Li interfacial resistance are three major issues facing garnet-based solid electrolytes. Herein, interfacial architecture engineering by incorporating 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMP-TFSI) ionic liquid into a garnet oxide is proposed. The "soft" continuous BMP-TFSI coating with no added Li salt generates a conducting network facilitating Li+ transport and thus changes the ion conduction mode from point contacts to face contacts. The compacted microstructure suppresses Li-dendrite growth and shows good interfacial compatibility and interfacial wettability toward Li metal. Along with a broad electrochemical window larger than 5.5 V and an Li+ transference number that practically reaches unity, LiNi0.8 Co0.1 Mn0.1 O2 /Li and LiFePO4 /Li solid-state batteries with the hybrid solid electrolyte exhibit superior cycling stability and low polarization, comparable to those with commercial liquid electrolytes, and excellent rate capability that is better than those of Li-salt-based ionic-liquid electrolytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call